QUASILINEAR PARABOLIC EQUATIONS WITH A SINGULAR FORCING

CLAUDIA RAITHEL

Our goal is to obtain a well-posedness theory for a quasilinear parabolic initial value problem with a rough forcing. In particular, we are interested in equations of the form

$$
\begin{array}{rll}
\left(\partial_{2}-a(u) \partial_{1}^{2}+1\right) u & =f & \text { on }
\end{array} \quad \mathbb{R}_{+}^{2},,
$$

where $a \in C^{\alpha}(\mathbb{R}), g \in C^{\alpha}(\mathbb{R})$, and $f \in C^{\alpha-2}\left(\mathbb{R}^{2}\right)$ with $\alpha \in\left(\frac{2}{3}, 1\right)$. We work under the assumption of spatial periodicity for a, f and g and also time periodicity for the forcing f. Our well-posedness theory comes in two parts: 1) We must determine a meaning for the product $a \partial_{1}^{2} u$, which due to a lack of regularity is not classically defined. 2) Given this notion of the product, we construct a solution operator satisfying some continuity properties. These results can be seen as a natural continuation of the recent work of Otto and Weber in which the authors treat the space-time periodic version of our problem (without a massive term). This is a joint work with Felix Otto and Jonas Sauer.

